Chapter 4 (4.3)

Increasing/ Decreasing test

(a) If $f^{\prime}(x)>0$ on an interval I, then f is increasing on that interval.
(b) If $f^{\prime}(x)<0$ on an interval I, then f is decreasing on that interval.

Examples:

A. $f(x)=e^{x^{3}+2 x}$ is increasing on \mathbb{R} since $f^{\prime}(x)=\left(3 x^{2}+2\right) e^{x^{3}+2 x}>0$ for all $x \in \mathbb{R}$.
B. $f(x)=\frac{1}{e^{x}+1}$, then
a. $f(x)$ is increasing on \mathbb{R}
b. $f(x)$ is decreasing on \mathbb{R}
c. $f(x)$ is not monotonic ${ }^{1}$
d. $f(x)$ is increasing on $(-\infty,-1)$

Solution of B:
Since $f^{\prime}(x)=\frac{-e^{x}}{\left(e^{x}+1\right)^{2}}<0$ for all $x \in \mathbb{R}$, then the answer is b.

[^0]
[^0]: ${ }^{1}$ Monotonic means increasing or decreasing.

