Chapter 4 (4.3)

Increasing/ Decreasing test

- (a) If f'(x) > 0 on an interval I, then f is increasing on that interval.
- (b) If f'(x) < 0 on an interval I, then f is decreasing on that interval.

Examples:

A. $f(x) = e^{x^3 + 2x}$ is increasing on \mathbb{R} since $f'(x) = (3x^2 + 2)e^{x^3 + 2x} > 0$ for all $x \in \mathbb{R}$.

B.
$$f(x) = \frac{1}{e^{x} + 1}$$
, then

- a. f(x) is increasing on \mathbb{R}
- b. f(x) is decreasing on \mathbb{R}
- c. f(x) is not monotonic¹
- d. f(x) is increasing on $(-\infty, -1)$

Solution of B:

Since $f'(x) = \frac{-e^x}{(e^x + 1)^2} < 0$ for all $x \in \mathbb{R}$, then the answer is b.

 $^{^{\}rm 1}$ Monotonic means increasing or decreasing.